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A stochastic theory approach is used to formulate the theory of quan tum 
mechanical motion. Apart from giving a unifying point of view to quantum 
mechanics and stochastic theory, the new formulation is not limited to forces 
derivable from a potential. A nonlinear dynamical law is deduced in contra- 
distinction to previous works in which ad hoc linear laws are postulated, 
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1. I N T R O D U C T I O N  

Many approaches have been at tempted in order to formalize and extend the 
statistical concepts in quan tum theory. One approach is yon Neumann ' s ,  
which is based on the hypothesis o f  repeatability of  measurements.  ~1~ A major  
difficulty is obtaining the t ransformat ion of  states due to the measurement  of  
observables. For  discrete observables, an operat ional  approach  was 
introduced by Schwinger I~) and Haag  and Kastler. (3l 

The other approach  relies on seeking analogy between Ko lmogorov ' s  
measure-theoretic formulat ion o f  classical probabil i ty theory (4) and 
yon Neumann ' s  Hilbert-space formulat ion o f  quan tum mechanics. I~) What  
are supposed to correspond to "observables"  in classical probabili ty theory 
are the random variables, and the "s ta tes"  o f  quan tum theory are 

1 Office of Research Services, University of California, Berkeley, California. 
2 Present address: Center for Advanced Study and Department of Physics, University of 

Ire, Ile-Ife, Nigeria. 

217 
�9 1972 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 



218 'J. Ogunlana 

regarded a~ analogs of` the probability measures. Again, tb.is approa~'h 
faces fundamental diflSculties. Basic ph:~sica.! quaI~titie~ (e.g.. joint probabilit.\ 
distribution functions, conditional expectations) are realizable only under 
very restricted conditions--which is unnatural (e.g.. conditional expectation.~ 
exist if and only if the observable has a discrete spectrum~'~.-~: probability 
distributions exist if and only if the observables commuter'S). 

The classical probability theory, as formulated by Kolmogorov,  begin~ 
with the sample space (f2, m), a standard Borel space. If Re ,  C,,. and fdeno te .  
respectively, the space of real, bounded Borel measures on D. the cone of 
positive measures in RB, and the functional (f,/x) -=/z(.C2), then (RB, C,,. f )  
comprises a state space. The set of  measurable observables is detined a~ 
comprising those ~hose values are B(.o.), ~here B(_C)) i~ the ~pace of 
bounded Borel functions on D. A random variable is deiined to be a Borel 
map .x: _(2, ~ X, where (X, A) is a Borel space (usually the real line), and where 

X is a set \~ith a ~r-field A of subsets of X, and a mapping a: A -~ R~ ~. Fo~" 
all states normalized by the probability law p. on D. the image ta\~ is defined 
as the probability measure v on X given by c(E) =/z(_~-tE) for all E §  A. 
There is a one-to-one embedding of the space B(.C2) on D into R~ ~ defined b~ 

" D  

Then. 

where the right-hand side is the distribution of the observable a(...) in the 
state #. 

According to the conventional formulation of quantum theory, a state 
is defined as a positive operator on a complex Hilbert space ;-/" ~LLCh that the 
trace [p] is finite. An observable is defined as a selF-adjoint operator]~ on H. 
A!ternatively. using the spectral theorem, an observable is a projection-valued 
measure J?~(-..) on the ~-field of" Borel subsets of the Fcai line ~. If the system 
is in state p. then the prob~ibility that the observable takes values in c is given 
by 

P(p, R, r) ----- tr[pm(r)]/tr[o] 

A theory encompassing the classical and quantum probability concepts 
can be developed by taking as a state space the triplet (BR. C,..fT), 
where BR is a real Banach space, Cc is a closed cone generating BR, and./'~ is 
a linear functional such that ( f z ,  b) = Lib ii, Vba BR. A state is defined as a 
nonzero element of  Cc,  while an observable is the triplet (X, A, a), where A 
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is a ~;-field of.~ubsets of X, and a is a mapping, a: ,4 -~ s 
every countable class {E,.', of  pairwise disjoint sets in .4: 

0) 

60 
(iii) 

a( .v)  = f , .  

0 <~a(E) ~a(X) ,  VEeA.  
aeo 

a(Zi=a E~) = Ui=l a(E,). 

" ,such theft, for 

None of the conventional methods of quantum mechanics is capabie 
of  resolving fundamental  problems in standard quantum mechanics (e.g., 
restriction to forces derivable from a potential). A more general formulation 
with a clear physical interpretation is therefore necessary. This is the objective 
of  our paper. It should be emphasized, however, that the presentation bclo~ 
is not to be taken as suggesting that quantum mechanics i sa  random process. 

In order to give as clear a physical meaning as possible to the mechanics, 
we shall take the approach in which classical ideas still have meaning. 
Several attempts to obtain quantum mechanics using classical notions have 
have been made. "~,*~ 

Either a Brownian model is used a., the basis for ~iae cor,~ruc'~ion, or 
a semideductive stochastic approach is taken. The second appro.ach ' ' ' > '  
is more complete than the first. However, the crucial connection between the 
kinematic and dynamical quantities is missir~, and thus important consid- 
erations, such as the effect of non-Markovian terms, can~qot be taken into 
account. The lack of a general force-kinematics relationship, the inabiiit', 
to account for the non-Markovian terms, and dae neglect of spin constitute 
some of the limitations in previous work. These limitations are eliminated 
in this paper. 

2.  T H E  N E W  F O R M U L A T I O N  

Assuming that the total force acting on the sy'.~tem under investigation 
can be considered as a sum of deterministic and nondeterministic components.  
then we can also consider the velocity as being of two such components. Since 
irrversibility is a fundamental  truth, we require that our basic equation have 
this property. Finally, we propose a dynamical law which reduces to 
Newtonian mechanics for deterministic systems. Hence our fundamenta! 
equations are 

F = ma (la) 

V,~* = - V a ,  V~* = V, (lb) 

V --- V~ + Vd (Ic) 



220,  'J .  O g u n l a n a  

where F, m, a, and V, denote, respectively, the force, mass. acceleration. 
and velocity; Va,  V~ denote the deterministic and stochastic velocities, 
respectively; and Va*, ~r are the corresponding quantities under time- 
reversal. 

We now need  an operator ~ corresponding to d/dt i n  deterministic 
mechanics. For a functional f (x ,  t), we assume the possibility of a Taylor 
expansion; thus m~ (see also Ref. 12): 

f (x(t  + /lt),t-l- A t )=  f(x(t) , t)  + i~ [x,(t + At ) - -  xi(t)]~i 

+ �89 ~ [xi(t + At) -- .v:(t)][xJt + At) -- &(t) (,,.ej] 
i ,J 

+ ""I f (x( t) ,  t) (2) 

where the set {xi} is the collection of the components of x. Then, 

(]/At)[f(x(t + At), t -+- At) - - f (x ( t ) ,  t)] 

= l(a/at) + (1~At) E [x,(t + At) -- :q(t)] a, 
i 

§ (1/2 At) y~ [x,(t § At) -- xz(t)][xM § .At) -- xj(r)] a~3 
i,J 

+ ""I f (x( t) ,  t) (2a) 

If we take the mean of Eq. (2a) and consider At --~ 0, then we have 

c~j.~ limo (1/At)<f(x(t + At), t + At) --f( ,x(t) ,  t)) 

= [(3/~t) -+-,, Z c f , ,  ~ Z D~,~@: _a "" ] f (x ,  t) (31 
i i , j  

where the angular brackets denote mean in the sense of conditional 
expectation, and where 2Di~ is the second-order moment of the distribution, 
divided by At. Assuming that Di: is diagonal, then we have 

~ f - -  (~f/aO + v .  v f  + n vV + .-- (4a) 

~ * f  = --(aft&) § V* �9 V f §  D* V~f-a' ... (4b) 

Because 2 *  becomes the negative of the total derivative for the deter- 
ministic case, it is called the mean backward derivative. Correspondingly, 

is the mean forward derivative. 
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The following useful relations and definitions follo\~ at once: 

V,, = 1 ( 2  - -  ~ * ) x  --= -.@ax (5a) 

V~ = { ( ~  + 2 " )  x ~ .~,x (5b) 

~ x i  = vi (6a) 

2 ~ ' x i  = t'i* (6b) 

Now 

We can write 

hence, 

F = m(ad + a,) (7) 

Fdlm = alaa - -A2a,  (7a) 

F J m  = aa(1 - -  kl) + a,(1 q- A2) (7b) 

The requirement  that  Newtonian  mechanics  be recoverable  yields 

k 1 ~ 1 (7c) 

So, we have 

F~ = ma~ - a~a,m (Sa)  

F --= F,: '-- mao(1 + A2) (8b) 

These are the fundamenta l  equat ions of  the theory. 
Rewrit ing (8), we have 

which give 

(ave /a t )  + (Vd.  v)  vo - D_V-"V~ --  ae(V ~ - V) V, - -  ae/)_.V2V., = Fd/m (9a) 

( a V , / e t ) + ( V ~ ' V ) V ~ + ( V ~ ' V ) V ~ + D ~ V ~ V e - - D _ V ~ V ~  = 0 (9b) 

where 

D_ _= ~(D* - -  m), m~_ =-- t,(m* + D) (9c) 

Let c~o and 5~ denote, respectively, the determinist ic-part  and  the 
s tochast ic-part  operators .  Let S and R be defined b y  

Va = 2~ VS (10a) 

Vs = 2~ VR (10b) 

8221412I~-Io 
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where S(x, t) and R(x, t) are real functions of x and t, and where ~ is yet to 
be determined. 

As shown in Section 3 below, the quantity r ~ exp(R + iS) is the 
associated wave function. We can, from standard quantum mechanics, obtain 
the quantum force as 

F -= h=/2m)(O r -~ (10c) 

and the mean acceleration as 
or: 

;J7 m(d2/dt~-)(x) = r162 dx (10d) 

where E is the potential energy. Taking the form of (10c) and (10d) to hold 
for the more general formulation, then, on using (8b), we obtain the following 
expression for ~ after a straight forward manipulation: 

~2 = (1/ma,)(a2/2m)(OCJOx) 2 -- 1 (1 la) 

where 

r is given by 

= ~ . . . .  ' i s ) ] =  ma~ (a'/2m)[-~s(c/cx) exp(R -- 

(c~ /2m)(cr ----- --  ] j j ~b~*(c~"/2,,,)(br dx 

and where we have used .~ for the constant corresponding to h in the general 
case. So, 

(Uga/at) -? (Va �9 V) Va -- D_ VeVa 

and 

- z. .(~,  R ,  S ) ( V s  �9 V) V s 

--  A2(~, R, S) D+ V2V~ = F,~/m 

(bV~/0t) -i- (Vd ' V) V~ + (V~ �9 V) Va § D_ V"Vd --  D_ V2V, = 0 

Equations (1 I) are the basic equations of our theory. 

( l lb )  

(1 lc) 

3. I M P O R T A N T  SPECIAL CASE: T H E  S C H R O D I N G E R  
E O U A T I O N  

We consider the special case where: (i) the coefficients D+ and D_ 
depend only on time, (ii) the deterministic force is derivable from a potential, 
(iii) the velocity V is irrotational. Then, we have 

(~Va/&)--V[-.~V~ ~ -  D _ V ' V ~ - -  �89 2 - ~ D + V ' V s  = --2"r (12a) 

(aVs/&) + V[Vd �9 V, -- D+ V �9 Va -- D_ V .  Vs] = 0 (12b) 
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where --Vq5 = Fe/m. Now, use Va = 2a VS and V~ 

~b ~ exp(R + iS) 

Then,  we have 

ic~ aqo/at = �89 + V2(ln ~b)(--2a~-)[(D+/~x) - -  (iD_/a) --  11 

x (1 - -  A.a)(D+ V �9 V, + �89 - -  c( 2 V2~ (14) 

Choose  /12 ~= 1, D+ = a = const,  and D_ = 0. This choice of  quanti t ies 
simplifies the nonl inear  equat ion (I 4), reducing it to a l inear equat ion,  thereby 
decoupling the Schr/Sdinger equat ion f rom its complex  conjugate.  Thus we 
have 

is a ,lat = - v q  ( 1 5 )  

But this is the Schr6dinger  equat ion.  Thus,  we identify a as 

a =- h lem (16) 

= 2~VR,  and put 

(13) 

4. F U R T H E R  SPECIAL CASES: B R O W N I A N  N O T I O N  A N D  
C O N S E R V A T I O N  E Q U A T I O N S  

In Brownian  mot ion ,  the basic quant i ty  is the probabi l i ty  density P: 

P = ~b~b* = e ~-R (17) 

Using the same assumpt ions  as those needed to obtain  Schr~Sdinger's equat ion 
gives 

V, = V(a In P)  = c~(Vp)/p (18) 

which is Einstein's equat ion of  Brownian  mot ion .  Combin ing  (18) with 
(12) yields 

(ap/at) + (v  �9 v a ) p  = 0 (19) 

which is the equat ion of  continuity,  and 

8p/at = - - V  �9 V P  + D V=P (20) 

which is the F o k k e r - P l a n c k  equat ion,  and 

D ~ D+ - -  D_ (20a) 

For  completeness ,  we add the equat ion of  conservat ion of  energy, 

�89 2 + �89 2 + q~ = - - I @ S / &  (21) 

where q~ = mq~. 
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A phenomenological description of Brownian motion is through the 
Langevin equation 

m dV/dt  ----- --mfiV + Fa + F~(t) (22) 

For fit >~ I, the acceleration is small, and so dV/dt  ~ O. But also <F,(t)) = O. 
Hence, 

V ~ Fa/mfl 

Using (23) in (20) yields 

ap/at = - -V  �9 (Fa/mfi) p ~- D V"-p 

which is the Smoluchowski equation. 
Uncertainty relations�9 Let 

Ax~ = x ~ -  <x~), 

Then, 

<(AxO'a'/<(dt,~) "-) > D a 

In the quantum mechanical case, D ----- a, and 

<(AxO")((AvO"> >~ a ~" 

(23) 

(24) 

Avi = G - -  (v i )  (25) 

(26) 

(27) 

S. C O N C L U S I O N  

We have demonstrated that a stochastic theory approach could be used 
as the foundation for quantum mechanics. The approach has the advantages 
of physical clarity and a minimum of postulates, in addition to not being 
being limited to forces derivable from a potential, when the new formulation 
is used for extended rigid particles, then a generalized SchrSdinger equation 
for integral or ha l f  integral spins is obtained�9 This formulation opens new 
possibilities, particularly in the investigation of many problems not within 
the scope of standard quantum mechanics. 
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