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On Reformulating Quantum Mechanics
and Stochastic Theory

’J. Ogunlana?
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A stochastic theory approach is used to formulate the theory of quantum
mechanical motion. Apart from giving a unifying point of view to quantum
mechanics and stochastic theory, the new formulation is not limited to forces
derivable from a potential.. A nonlinear dynamical law is deduced in contra-
distinction to previous works in which ad hoc linear Jaws are postulated.

- KEY WORDS: Nonlinear quantum and classical mechanics; stochastic
motion. ’ ’

1. INTRODUCTION

Many approaches have been attempted in order to formalize and extend the
statistical concepts in quantum theory. One approach is von Neumann's,
which is based on the hypothesis of repeatability of measurements.™ A major
difficulty is obtaining the transformation of states due to the measurement of
observables. For discrete observables, an operational approach was
introduced by Schwinger® and Haag and Kastler.®

The other approach relies on seeking analogy between Kolmogorov’s
measure-theoretic formulation of classical probability theory® and
von Neumann’s Hilbert-space formulation of quantum mechanics.”® What
are supposed to correspond to “observables’ in classical probability theory
are the random variables, and the ‘states” of quantum theory are
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regarded as analogs of the probability measures. Again, this approach
faces fundamental difficulties. Basic physical quantities (e.g.. joint probabiliny
distribution functions, conditional expectations) are realizable only under
very restricted conditions—which is unnatural (e.g.. conditional expectations
exist if and only if the observable has a discrete specirum-™': probability
distributions exist if and only if the observables commute®).

The classical probability theory, as formulated by Kolmogorov, begins
with the sample space (£2, m), a standard Borel space. If R, , C,, . an< fdenote.
respectively, the space of real, bounded Borel measures on £. the cone of
positive measures in Rz , and the functional {f, u = p(Q), then (Rz . C,, . f)
comprises a state space. The set of measurable observabtes is defined as
comprising those whose values are B(£Q), where B(X2) i5 the space of
bounded Borel functions on 2. A random variable is defined to be a Borel
map x: 2 — X, where (X, 4) is a Borel space (usuallv the real line), and where
X 1s a set with a o-fleld 4 of subsets of X, and a mapping «: 4 — Rz™. For
all states normalized by the probability law x on Q. the image law is defined
as the probabiiity measure v on X given by v(£) = w(x"1E) for all £ 4.
There is 2 one-to-one embedding of the space B(Q) on 2 into Ry~ defined by

Fps = J‘p f@ypdw, YueRp

Then.
o(£) = {a(E), pn;

where the right-hand side is the distribution of the observable a{---) in the
state p.

According to the conventional formulation of quantum theory, a state
is defined as a positive operator on a complex Hilbert spuce /7 such that the
trace [p] is finite. An observable is defined as a self-adjoint operator p on H,
Alternatively. using the spectral theorem. an observable is a projection-valued
measure /a(---) on the o-field of Borel subsets of the real line & If the system
is in state p. then the probability that the observable takes values in ¢ is given
by

P(p, R, v) = tr[pm(z)]/tr[o]

A theory encompassing the classical and quantum probability concepts
can be developed by taking as a state space the triplet (Br. C.. f)).
where By is a real Banach space, C, is a closed cone generating By, and f; is
a linear functional such that (f;, b, = || b}, Vb By . A state is defined as a
nonzero element of C, , while an observable is the triplet (X, 4. a), where A
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Is a4 o-field of subsets of X, and « is a mapping, a1 4 — B, such thut. for
every countable class {£,} of pairwise disjoint sets in A:

() aX)=/1.
() 0 < a(E) <a(X), VEeA.

(i) aCi, £ = Ui a(ED.

None of the conventional methods of quantum mechanics is capable
of resolving fundamental problems in standard quantum mechanics (e.g.,
restriction to forces derivable from a potential). A more general formulation
with a clear physical interpretation is therefore necessary. This is the objective
of our paper. It should be emphasized, however, that the presentation below
is not to be taken as suggesting that quantum mechanics is a random process.

In order to give as clear a physical meaning as possible to the mechanics,
we shall take the approach in which classical ideas still have meaning.
Several attempts to obtain quantum mechanics using classical notions have
have been made,®10.13.19)

Either a Brownian model is used s the basis for the construction. or
a semideductive stochastic approach is taken. The sccond approach't
is more complete than the first. However, the crucial connection between the
kinematic and dynamical quantities is missing, and thus important consid-
erations, such as the effect of non-Markovian terms, cannot be taken into
account. The lack of a general force-kinematics relationship. the inability
to account for the non-Markovian terms, and the neglect of spin constitute
some of the limitations in previous work. These limitations are eliminated
in this paper. -

2. THE NEW FORMULATION

Assuming that the total force acting on the system under investigation
can be considered as a sum of deterministic and nondeterministic conmponents,
then we can also consider the velocity as being of two such components. Since
irrversibility is a fundamental truth, we require that our basic equation have
this property. Finally, we propose a dvnamical law which reduces to
Newtonian mechanics for deterministic systems. Hence our fundamental
equations are '

F = ma (la)
Vit ==V, V>=1V, (1b)

V == Vs + Vd (IC)
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where F, m, a, and V, denote, respectively, the force. mass. acceleration.
and velocity; V;, V, denote the deterministic and stochastic velocities,
respectively; and V, *, V.* are the corresponding quantities under time-
reversal. ’

We now need an operator & corresponding to d/dt in deterministic
mechanics. For a functional f(x, t), we assume the possibility of a Taylor
expansion; thus® (see also Ref. 12):

Flxte + A0, + A1) = f(x(@, 1) + |3 bt + 40) = %)

F 1Y [+ A1) — Ol + A0 — x(0) 6]

i
+ oo S0, 1) (2)
where the set {x,} is the collection of the components of x. Then,

(14D f(x(r + A1), 1 + A1) — f(x(1), 1)]

- 3(5/@) L (1/AD Y [t + A1) — x(1)] &,
+ (172 41y Y Txdr 4 41) — xD)[x,(t + 41) — x(D] €&
+ e (1) (2a)
If we take the mean of Eq. (2a) and consider 47 — 0, then we have
Gf = gi% (A F(x(t + At), 1 -+ dr) — f(x(2), 1)}

— [(a/ar) +5 2~ 3 Dye; - ---]f(x, 1) (3)

where the angular brackets denote mean in the sense of conditional
expectation, and where 2D, is the second-order moment of the distribution,
divided by dt. Assuming that D,; is diagonal, then we have

Gf = (Gflet)y + V * Nf+ DY+ oo (4a)
GHf = —(&fjot) + V* - Nf - DV L - (4b)

Because Z* becomes the negative of the total derivative for the deter-
ministic case, it is called the mean backward derivative. Correspondingly,
Z is the mean forward derivative.
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The following useful relations and definitions follow at once:

V, = N2 — %x = 2,x (5a)
V=32 + F¥)x=2x (5b)
Zx; =1, (62)
ZFx; = v* (6b)
Now

F = m(a, + a) ™)

We can write
Fym = Aag — Aa, (7a)

hence,

Ffm = a,(1 — A)) + a1 + Ay (7b)

The requirement that Newtonian mechanics be recoverable yields

A =1 (7¢)

So, we have
' F, = ma; — A.am (8a)
F=F,+-ma(l+2A) (8

These are the fundamental equations of the theory.
-Rewriting (8), we have

m[ZVe — A2 V,] =F,
.@(,ZV_S LGV, =0

which give
(eVgior) + (Vg VIV, — D VWV, — AV, - )V, — A, D. V2V, =F,/m (92)
@Vfer) + (Ve V) Vo + (V- V) Vo + D V3V, — D_V3V, =0 (9b)

where
D_ = ¥D*— D), D. = {D* -+ D) (9¢)

Let ¥, and %, denote. respectively, the deterministic-part and the
stochastic-part operators. Let S and R be defined by:

V, = 2xVS (10a)
V.= 2xVR (10b)

822/4/2[3-10
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where S(x, t) and R(x, 1) are real functions of x and 7, and where ~ is yel to
be determined.

As shown in Section 3 below, the quantity ¢ = exp(R + iS) is the
assoclated wave function. We can, from standard quantum mechanics, obtain
the quantum force as

F = 12[2m)(0y/ox)? (10c)

and the mean acceleration as

=+

m(d?d2)(x) = f J J Y (—EEJox) dx (10d)

—CC

where E is the potential energy. Taking the form of (10c) and (10d) to hold
for the more general formulation, then, on using (8b), we obtain the following
expression for A, after a straight forward manipulation:

Ay = (1/ma)(o®2m)(03p/0x)* — 1 (11a)
where

ma, = (&*2m)[L(E/cx) exp(R + ISP
s is given by ‘
(a22m)(Epfox)t = — | J | o ¥ (o 2m) (e, 6x)° dx

-

and where we have used x for the constant corresponding to # in the general
case. So,

(evyjet) ~(V, V) Vy— D_¥V3V,; — A(«, R, SHV, - V)V,
— A2, R,SY DV, = F,/m (11b)
and |
BV jor) + (Va V)V, £ (V,* V)V, = D_VV, — D_V2V, =0 (llc)

Equations (11} are the basic equations of our theory.

3. IMPORTANT SPECIAL CASE: THE SCHRODINGER
EQUATION

We consider the special case where: (i) the coefficients D, and D_
depend only on time, (ii) the deterministic force is derivable from a potential,
(iii) the velocity V is irrotational. Then, we have

BV 6) ~SAVE —D_V -V, — IV2— D,V -V, = —Vé (12a)
(EV o)+ V[V, -V, =~ D, V-V,—D_V-V]=0 (12b)
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where —V¢ = Fy/m. Now, use V, =2 VS and V,= 2. VR, and put
§ = exp(R + iS) | (13)
Then, we have
fo 8/t = 3{¢ + VH(In )(—2a)[(D4 /o) — (iD_[o) — 1] ‘
X (1= 2)D, V- Vi + 3V 3] — o2 VI )
Choose Ay = 1, D, = « = const, and D_ = 0. This choice of quantities
simplifies the nonlinear equation (14), reducing it to a linear equation, thereby

decoupling the Schrédinger equation from its complex conjugate. Thus we
have

o Ofjot = [1d — a® V3] ¥ (15)
But this is the Schrodinger equation. Thus, we identify « as
o« = h/2m (16)

4. FURTHER SPECIAL CASES: BROWNIAN MOTION AND
CONSERVATION EQUATIONS

In Brownian motion, the basic quantity is the probability density P:
P = uf* = ek amn

Using the same assumptions as those needed to obtain Schrodinger’s equation
gives
V, = V(aln P) = «(Vp)/p (18) -

which is Einstein’s equation of Brownian motion. Combining (18) with =
(12) yields i

(8pjan) + (Y - V) p =0 (19)
which is the equation of continuity, and
opjet = —V - VP 4 D V2P 20
which is the Fokker-Planck eqhation. and
D=D._—D_ (20a)
For compléteness, we add the equation of conservation of énergy,
ImVE + dmV 2+ @ = —feS/et (21

where @ = md.
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A phenomenological description of Brownian motion is through the
Langevin equation
mdVjdt = —mpV + ¥, +F (1) - (22)
For Bt > 1, the acceleration is small, and so dV/dr ~ 0. But also (F(t); = 0.
Hence,
V ~ FyimB | 23)
Using (23) in (20) yields
oplot = —V - (Fa/mB)p + DV (24)

which is the Smoluchowski equation.
Uncerrainty relations. Let

dx; = x; — {x, do; = v; ~ (o | (25)
Then,
{dx) < de:)*y = D* (26)
In the quantum mechanical case, D = «, and
Ax P (dv)*y = ot (27)

5. CONCLUSION

We have demonstrated that a stochastic theory approach could be used
as the foundation for quantum mechanics. The approach has the advantages
of physical clarity and a minimum of postulates, in addition to not being
being limited to forces derivable from a potential. When the new formulation
is used for extended rigid particles, then a generalized Schrédinger equation
for integral or half-integral spins is obtained. This formulation opens new
possibilities, particularly in the investigation of many problems not within
the scope of standard quantum mechanics.
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